谭志杰

来源:武汉大学物理科学与技术学院    发布时间 : 2018/08/15      点击量:

教师姓名:谭志杰
单 位
职 称教授
学 历
E-mailzjtan@whu.edu.cn
研究方向

详细描述

姓    名:    谭志杰 (Zhi-Jie Tan)
职务/职称:教 授(博士生导师)
电子邮箱: zjtan@whu.edu.cn

招生专业: 理论物理、凝聚态物理


本课题组欢迎有志于统计物理、软物质物理和生物物理方向的博士/博士后,特别欢迎他校保研/考研的同学。

Education & Experience

1996年获武汉大学理学学士,2001年获武汉大学博士学位,期间获中国科学院奖学金,博士学位论文获全国优秀博士论文提名奖和湖北省优秀博士论文。博士生期间留武汉大学任教,2001年破格晋升为副教授,后公派赴美国密苏里大学合作研究,并获得该校生命科学博士后奖学金。20086月回到武汉大学,晋升为教授,并被遴选为博士生导师。2008年入选教育部新世纪人才计划,2010年获国家自然科学二等奖(第三完成人),2011年获湖北省青年科技奖。主讲弘毅学堂物理班《热力学与统计物理》和研究生通开课《固体物理II。目前担任中国物理学会软物质与生物物理专业委员会委员、中国生物信息学会生物大分子结构预测与模拟常委会委员、全国统计物理与复杂系统会议学术委员会委员等,中国物理学会、美国生物物理学会等学会会员。现主持国家自然科学基金项目,已完成主持国家自然科学基金项目多项

Research Interests

1, 发展物理模型,预测RNADNA三维结构热力学及其中离子静电效应;

2, 发展高性能RNA结构评估势能函数RNA-药物小分子结合势能函数模型;

3, 发展高性能RNA三维结构拼装模型和RNA三维结构优化模型;

4, 利用计算机模拟,预测和理解DNARNA结构与力学弹性及其微观机制。

Invited Reviews:

1, Chen et al. A comprehensive evaluation on RNA secondary structures prediction methods. Chin Phys B 34: 088710, 2025.

2, Wang et al. RNA 3D Structure Prediction: Progress and Perspective. Molecules. 28: 5532, 2023.

3, Tan et al. Statistical potentials for 3D structure evaluation: from proteins to RNAs. Chin Phys B 30: 028705, 2021.

4, Bao et al. Flexibility of nucleic acids: from DNA to RNA. Chin Phys B 25: 018703 (1-11), 2016. (2018 CPB high citation article)

5, Tan et al. RNA folding: structure prediction, folding kinetics and ion electrostatics. Adv Expt Med & Biol 827:143-183, 2015.

6, Shi et al. RNA structure prediction: Progress and perspective. Chin Phys B 23: 078701(1-10), 2014.

7, Tan & Chen. Importance of Diffuse Metal Ion Binding to RNA, 9:101-124. in "Structural and Catalytic Roles of Metal Ions in RNA" (volume of Metal Ions in Life Sciences), edited by Astrid Sigel, Helmut Sigel, and Roland K. O. Sigel. 2011.  

8, Tan & Chen. Predicting electrostatic forces in RNA folding, 469:465-487, in "Biophysical Approaches to RNA Structure and Folding" (volume of Methods in Enzymology), edited by Daniel Herschlag. 2009.

Selected Articles (as corresponding or 1st author):

1, Lou et al. rsRNASP1: A distance- and dihedral-dependent statistical potential for RNA 3D structure evaluation. Biophys J. 2025 124: 2740-2753, 2025.

2, Dong et al. Effect of protein binding on the twist-stretch coupling of double-stranded RNA. J Chem Phys. 162: 145101, 2025.

3, Dong et al. The origin of different bending stiffness between double-stranded RNA and DNA revealed by magnetic tweezers and simulations. Nucleic Acids Res. 52: 2519-2529, 2024.

4, Zheng et al. Effect of ethanol on the elasticities of double-stranded RNA and DNA revealed by magnetic tweezers and simulations. J Chem Phys. 161: 075101, 2024.

5, Wang et al. Predicting 3D structures and stabilities for complex RNA pseudoknots in ion solutions. Biophys J. 122: 1503-1516, 2023.

6, Tan et al. cgRNASP: coarse-grained statistical potentials with residue separation for RNA structure evaluation. NAR Genom Bioinform. 5: lqad016, 2023.

7, Zhao et al. 5-Methyl-cytosine stabilizes DNA but hinders DNA hybridization revealed by magnetic tweezers and simulations. Nucleic Acids Res. 50: 12344-12354, 2022.

8, Zhou et al. FebRNA: An automated fragment-ensemble-based model for building RNA 3D structures. Biophys J. 121: 3381-3392, 2022.

9, Qiang et al. Multivalent cations reverse the twist-stretch coupling of RNA. Phys Rev Lett 128: 108103, 2022

10, Tan et al. rsRNASP: A residue-separation-based statistical potential for RNA 3D structure evaluation. Biophys J. 121: 142-156, 2022. (New and Notable article)

11, Feng et al. Salt-Dependent RNA pseudoknot stability: effect of spatial confinement. Front Mol Biosci. 8:666369, 2021.

12, Wang et al. An intratumoral injectable nanozyme hydrogel for hypoxia-resistant thermoradiotherapy. Colloids Surf B Biointerfaces. 207: 112026, 2021.

13, Fu et al. Opposite Effects of high-valent cations on the elasticities of DNA and RNA duplexes revealed by magnetic tweezers. Phys Rev Lett 124: 058101, 2020.

14, Wang et al. Salt effect on thermodynamics and kinetics of a single RNA base pair. RNA. 26: 470-480, 2020.

15, Zhang et al. Ion-mediated interactions between like-charged polyelectrolytes with bending flexibility. Sci Rep. 10: 21586, 2020.

16, Jin et al. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability and folding pathway. RNA. 25: 1532-1548, 2019;

17, Lin et al. Apparent repulsion between equally and oppositely charged spherical polyelectrolytes in symmetrical salt solutions. J Chem Phys 151, 114902, 2019;

18, Liu et al. Structural flexibility of DNA-RNA hybrid duplex: stretching and twist-stretch coupling. Biophys J 117: 74-86, 2019;

19, Tan et al. What is the best reference state for building statistical potentials in RNA 3D structure evaluation? RNA. 25: 793-812, 2019;

20, Jin et al. Modeling structure, stability, and flexibility of double-stranded RNAs in salt solutions. Biophys J 115: 1403-1416, 2018;

21, Shi et al. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions. PloS Comput Biol 14: e1006222, 2018;

22, Xi et al. Competitive binding of Mg2+ and Na+ ions to nucleic acids: from helices to tertiary structures. Biophys J 114: 1776-1790, 2018;

23, Zhang et al. Potential of mean force between oppositely charged nanoparticles: A comprehensive comparison between Poisson– Boltzmann theory and Monte Carlo simulations. Sci Rep 7: 14145, 2017;

24, Zhang et al. Divalent ion-mediated DNA-DNA interactions: A comparative study of triplex and duplex. Biophys J 113: 517-528, 2017. (Highlighted article);

25, Zhang et al. Radial distribution function of semiflexible oligomers with stretching flexibility. J Chem Phys 147: 054901, 2017. (Featured article);

26, Bao et al. Understanding the relative flexibility of RNA and DNA duplexes: stretching and twist-stretch coupling. Biophys J 112: 1094-1104, 2017;

27, Zhang et al. Potential of mean force between like-charged nanoparticles: many-body effect. Sci Rep 6: 23434 (1-12), 2016;

28, Shi et al. Predicting 3D structure, flexibility and stability of RNA hairpins in monovalent and divalent ion solutions. Biophys J 109: 2654-2665, 2015;

29, Wu et al. Multivalent ion-mediated nucleic acid helix-helix interactions: RNA versus DNA. Nucleic Acids Res 43: 6156-6165, 2015.

30, Wu et al. Flexibility of short DNAs with finite-length effect: from base pairs to tens of base pairs. J Chem Phys 142: 125103(1-13), 2015;

31, Shi et al. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect. J Chem Phys 141: 105102(1-13), 2014.

32, Wang et al, Salt contribution to the flexibility of single-stranded nucleic acid of finite length. Biopolymers 99: 370–381, 2013. (Cover story);

33, Tan & Chen. Ion-mediated RNA structural collapse: effect of spatial confinement. Biophys J 103: 827-836, 2012;

34, Tan & Chen. Salt contribution to RNA tertiary structure folding stability. Biophys J 101: 176-187, 2011;

35, Tan & Chen. Predicting ion binding properties for RNA tertiary structures. Biophys J 99: 1565-1576, 2010;

36, Tan & Chen. Salt dependence of nucleic acid hairpin stability. Biophys J 95: 738-752, 2008;

37, Tan & Chen. Electrostatic free energy landscapes for DNA helix bending. Biophys J 94: 3137-3149, 2008;

38, Tan & Chen. RNA helix stability in mixed Na+/Mg2+ solutions. Biophys J 92: 3615-3632, 2007;

39, Tan & Chen. Electrostatic free energy landscapes for nucleic acid helix assembly. Nucleic Acids Res 34:6629-6639, 2006;

40, Tan & Chen. Ion-mediated nucleic acid helix-helix interactions. Biophys J 91: 518-536, 2006;

41, Tan & Chen. Nucleic acid helix stability: effects of salt concentration, cation valency and size, and chain length. Biophys J 90: 1175-1190, 2006;

42, Tan & Chen. Electrostatic correlation and fluctuations for ion binding to finite length polyelectrolyte. J Chem Phys 122:044903(1-16), 2005;

43, Tan et al. Pattern of particle distribution in multi-particle system by random walk with memory enhancement and decay. Phys Rev E 66: 011101, 2002;

44, Tan et al. Deposition, diffusion and aggregation on percolations: A model for nanostructure growth on nonuniform substrates. Phys Rev B 65: 235403, 2002;

45, Tan et al. Pattern formation on nonuniform surfaces by correlated-random sequential adsorption. Phys Rev E 65: 057201, 2002;

46, Tan et al. Random walk with memorial enhancement and decay. Phys Rev E 65: 041101, 2002;

47, Tan et al. Percolation with long-range correlations for epidemic spreading. Phys Rev E 62: 8409-8412, 2000;

48, Tan et al. Structure transition in cluster-cluster aggregation under external fields. Phys Rev E 61: 734-737, 2000;

49, 49, Tan et al. Influence of particle size on diffusion-limited aggregation. Phys Rev E 60: 6202-6205, 1999;

50, Tan et al. Influences of the size and dielectric properties of particles on electrorheological response. Phys Rev E 59: 3177-3181, 1999.


上一条:揭泉林

下一条:熊 锐

最新动态

联系我们

电话:027-68752161

邮箱:phy@whu.edu.cn