详细描述
姓 名: 谭志杰 (Zhi-Jie Tan)
职务/职称:教 授(博士生导师)
电子邮箱: zjtan@whu.edu.cn
招生专业: 理论物理、凝聚态物理、医学物理
本课题组招收统计物理、生物物理、医学物理方向的博士后和研究生。
教育与工作经历:
1996年获武汉大学理学学士,2001年获武汉大学博士学位,博士学位论文获全国优秀博士论文提名奖和湖北省优秀博士论文。2001年破格晋升为副教授,后公派赴美国密苏里大学合作研究。2008年6月回到武汉大学,晋升为教授,并被遴选为博士生导师。2008年入选教育部新世纪人才计划,2010年获国家自然科学二等奖(第三完成人),2011年获湖北省青年科技奖。担任中国物理学会软物质与生物物理专业委员会委员、中国生物信息学会(筹)生物分子结构预测与模拟专业委员会常务委员、全国统计物理与复杂系统会议学术委员会委员等。主讲弘毅学堂物理班《热力学与统计物理》和研究生《高等固体物理》。
研究兴趣:
1,基于物理原理与人工智能,预测核酸分子结构、热力学及其与蛋白质作用;
2,基于物理原理与人工智能,预测核酸-药物小分子复合体结构及其热力学;
3,基于计算机模拟与人工智能,预测和理解核酸动态结构与其功能间的关系。
代表性论文 (第一或通讯作者):
1. Dong et al. The origin of different bending stiffness between double-stranded RNA and DNA revealed by magnetic tweezers and simulations. Nucleic Acids Res. gkae063, 2024.
2. Wang et al. RNA 3D Structure Prediction: Progress and Perspective. Molecules. 28: 5532, 2023. (invited review)
3. Wang et al. Predicting 3D structures and stabilities for complex RNA pseudoknots in ion solutions. Biophys J. 122: 1503-1516, 2023.
4. Tan et al. cgRNASP: coarse-grained statistical potentials with residue separation for RNA structure evaluation. NAR Genom Bioinform. 5: lqad016, 2023.
5. Zhao et al. 5-Methyl-cytosine stabilizes DNA but hinders DNA hybridization revealed by magnetic tweezers and simulations. Nucleic Acids Res. 50: 12344-12354, 2022.
6. Zhou et al. FebRNA: An automated fragment-ensemble-based model for building RNA 3D structures. Biophys J. 121: 3381-3392, 2022.
7. Qiang et al. Multivalent cations reverse the twist-stretch coupling of RNA. Phys Rev Lett 128, 108103, 2022.
8. Tan et al. rsRNASP: A residue-separation-based statistical potential for RNA 3D structure evaluation. Biophys J. 121:142-156, 2022. (New and Notable article)
9. Li et al. Effective repulsion between oppositely charged particles in symmetrical multivalent salt solutions: effect of salt valence. Front Phys 9, 696104, 2021.
10. Feng et al. Salt-Dependent RNA pseudoknot stability: effect of spatial confinement. Front Mol Biosci. 8:666369, 2021.
11. Tan et al. Statistical potentials for 3D structure evaluation: from proteins to RNAs. Chin Phys B 30: 028705 (1-13), 2021. (invited review)
12. Lin et al. Multivalent ion-mediated attraction between like-charged colloidal particles: nonmonotonic dependence on the particle charge. ACS omega 6: 9876-9886, 2021.
13. Zheng et al. Ion-mediated interactions between like-charged polyelectrolytes with bending flexibility. Scientific Reports 10: 21586, 2020.
14. Fu et al. Opposite Effects of high-valent cations on the elasticities of DNA and RNA duplexes revealed by magnetic tweezers. Phys Rev Lett 124: 058101, 2020.
15. Wang et al. Salt effect on thermodynamics and kinetics of a single RNA base pair. RNA. 26: 470-480, 2020.
16. Jin et al. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability and folding pathway. RNA. 25:1532-1548, 2019.
17. Lin et al. Apparent repulsion between equally and oppositely charged spherical polyelectrolytes in symmetrical salt solutions. J Chem Phys 151, 114902, 2019.
18. Liu et al. Structural flexibility of DNA-RNA hybrid duplex: stretching and twist-stretch coupling. Biophys J 117:74-86, 2019.
19. Tan et al. What is the best reference state for building statistical potentials in RNA 3D structure evaluation? RNA. 25: 793-812, 2019.
20. Jin et al. Modeling structure, stability, and flexibility of double-stranded RNAs in salt solutions. Biophys J 115: 1403-1416, 2018.
21. Shi et al. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions. PloS Comput Biol 14: e1006222, 2018.
22. Xi et al. Competitive binding of Mg2+ and Na+ ions to nucleic acids: from helices to tertiary structures. Biophys J 114: 1776-1790, 2018.
23. Zhang et al. Potential of mean force between oppositely charged nanoparticles: A comprehensive comparison between Poisson– Boltzmann theory and Monte Carlo simulations. Sci Rep 7: 14145, 2017.
24. Zhang et al. Divalent ion-mediated DNA-DNA interactions: A comparative study of triplex and duplex. Biophys J 113:517-528, 2017. (Highlighted article)
25. Zhang et al. Radial distribution function of semiflexible oligomers with stretching flexibility. J Chem Phys 147:054901, 2017. (Featured article)
26. Bao et al. Understanding the relative flexibility of RNA and DNA duplexes: stretching and twist-stretch coupling. Biophys J 112:1094-1104, 2017.
27. Zhang et al. Potential of mean force between like-charged nanoparticles: many-body effect. Sci Rep 6: 23434 (1-12), 2016.
28. Bao et al. Flexibility of nucleic acids: from DNA to RNA. Chin Phys B 25: 018703 (1-11), 2016. (2018 CPB high citation article, invited review)
29. Shi et al. Predicting 3D structure, flexibility and stability of RNA hairpins in monovalent and divalent ion solutions. Biophys J 109: 2654-2665, 2015.
30. Wu et al. Multivalent ion-mediated nucleic acid helix-helix interactions: RNA versus DNA. Nucleic Acids Res 43: 6156-6165, 2015.
31. Tan et al. RNA folding: structure prediction, folding kinetics and ion electrostatics. Adv Expt Med & Biol 827:143-183, 2015. (invited review)
32. Wu et al. Flexibility of short DNAs with finite-length effect: from base pairs to tens of base pairs. J Chem Phys 142: 125103(1-13), 2015.
33. Shi et al. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect. J Chem Phys 141:105102(1-13), 2014.
34. Shi et al. RNA structure prediction: Progress and perspective. Chin Phys B 23: 078701(1-10), 2014. (invited review)
35. Wang et al, Salt contribution to the flexibility of single-stranded nucleic acid of finite length. Biopolymers 99:370–381, 2013. (Cover picture)
36. Tan & Chen. Ion-mediated RNA structural collapse: effect of spatial confinement. Biophys J 103:827-836, 2012.
37. Tan & Chen. Salt contribution to RNA tertiary structure folding stability. Biophys J 101:176-187, 2011.
38. Tan & Chen. Importance of Diffuse Metal Ion Binding to RNA. Metal Ions in Life Sciences 9:101-124, 2011. (invited review)
39. Tan & Chen. Predicting ion binding properties for RNA tertiary structures. Biophys J 99:1565-1576, 2010.
40. Tan & Chen. Predicting electrostatic forces in RNA folding. Methods in Enzymology 469: 465-487, 2009. (invited review)
41. Tan & Chen. Salt dependence of nucleic acid hairpin stability. Biophys J 95:738-752, 2008.
42. Tan & Chen. Electrostatic free energy landscapes for DNA helix bending. Biophys J 94:3137-3149, 2008.
43. Tan & Chen. RNA helix stability in mixed Na+/Mg2+ solutions. Biophys J 92:3615-3632, 2007.
44. Tan & Chen. Electrostatic free energy landscapes for nucleic acid helix assembly. Nucleic Acids Res 34:6629-6639, 2006.
45. Tan & Chen. Ion-mediated nucleic acid helix-helix interactions. Biophys J 91:518-536, 2006.
46. Tan & Chen. Nucleic acid helix stability: effects of salt concentration, cation valency and size, and chain length. Biophys J 90:1175-1190, 2006.
47. Tan & Chen. Electrostatic correlation and fluctuations for ion binding to finite length polyelectrolyte. J Chem Phys 122:044903(1-16), 2005.
48. Tan et al. Pattern of particle distribution in multi-particle system by random walk with memory enhancement and decay. Phys Rev E 66:011101, 2002.
49. Tan et al. Deposition, diffusion and aggregation on percolations: A model for nanostructure growth on nonuniform substrates. Phys Rev B 65:235403, 2002.
50. Tan et al. Pattern formation on nonuniform surfaces by correlated-random sequential adsorption. Phys Rev E 65:057201, 2002.
51. Tan et al. Random walk with memorial enhancement and decay. Phys Rev E 65:041101, 2002.
52. Tan et al. Percolation with long-range correlations for epidemic spreading. Phys Rev E 62:8409-8412, 2000.
53. Tan et al. Structure transition in cluster-cluster aggregation under external fields. Phys Rev E 61:734-737, 2000.
54. Tan et al. Influence of particle size on diffusion-limited aggregation. Phys Rev E 60:6202-6205, 1999.
55. Tan et al. Influences of the size and dielectric properties of particles on electrorheological response. Phys Rev E 59:3177-3181, 1999.