教授

教师姓名:谭志杰
单 位
职 称 教授
学 历
E-mail zjtan@whu.edu.cn
研究方向

详细描述

姓   名: 谭志杰 (Zhi-Jie Tan)

职务/职称:教 授(博士生导师) 

电子邮箱:zjtan@whu.edu.cn

QQ   号:1924086829




招生专业:凝聚态物理、医学物理、理论物理

Positions available:
本课题组长期招收统计物理、医学物理和生物物理方向的博士后和研究生。

Education & Experience
1996年获武汉大学理学学士,2001年获武汉大学博士学位,期间获中国科学院奖学金,博士学位论文获全国优秀博士论文提名奖和湖北省优秀博士论文。博士生期间留武汉大学任教,2001年破格晋升为副教授,后公派赴美国密苏里大学合作研究,并获得该校生命科学博士后奖学金。20086月回到武汉大学,晋升为教授,并被遴选为博士生导师。2008年入选教育部新世纪人才计划,2010年获国家自然科学二等奖(第三完成人),2011年获湖北省青年科技奖。主讲弘毅学堂物理班《热力学与统计物理》和研究生通开课《固体物理II。长期担任全国统计物理与复杂系统会议学术委员会委员,为美国生物物理学会会员RNA学会会员,现主持国家自然科学基金2项。

Research Interests

1,发展物理模型,预测RNA的三维结构及其热力学;
2,发展物理模型,预测DNARNA结构折叠中的离子静电效应;
3结合生物信息学方法发展RNA三维结构拼装模型;

4结合生物信息学方法,发展打分势能函数

5结合计算机模拟方法,理解和预测DNARNA折叠的结构、过程与机制

Invited Reviews:

Ø Tan YL, Feng CJ, Wang X, Zhang W*, and Tan ZJ*. Statistical potentials for 3D structure evaluation: from proteins to RNAs. Chin Phys B 29, 2020.

Ø Bao L, Zhang X, Jin L, & Tan ZJ*. Flexibility of nucleic acids: from DNA to RNA. Chin Phys B 25: 018703 (1-11), 2016. (2018 CPB high citation article)

Ø Tan ZJ, Zhang WB, Shi YZ, & Wang FH. RNA folding: structure prediction, folding kinetics and ion electrostatics. Advances in Experimental Medicine & Biology 827:143-183, 2015.

Ø Shi YZ, Wu YY, Wang FH, & Tan ZJ*. RNA structure prediction: Progress and perspective. Chin Phys B 23: 078701(1-10), 2014.

Ø Tan ZJ & Chen SJ. Importance of Diffuse Metal Ion Binding to RNA, 9:101-124. in "Structural and Catalytic Roles of Metal Ions in RNA" (volume of Metal Ions in Life Sciences), edited by Astrid Sigel, Helmut Sigel, and Roland K. O. Sigel. 2011.  

Ø Tan ZJ & Chen SJ. Predicting electrostatic forces in RNA folding, 469:465-487, in "Biophysical Approaches to RNA Structure and Folding" (volume of Methods in Enzymology), edited by Daniel Herschlag. 2009.

Selected Papers (as 1st or corresponding author):

Ø Fu H, Zhang C, Qiang XW, et al. Opposite Effects of high-valent cations on the elasticities of DNA and RNA duplexes revealed by magnetic tweezers. Physical Review Letters 124: 058101, 2020.

Ø Wang Y, Liu T, Yu T, et al. Salt effect on thermodynamics and kinetics of a single RNA base pair. RNA. 26: 470-480, 2020.

Ø Jin L, Tan YL, Wu Y, et al. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability and folding pathway. RNA. 25:1532-1548, 2019;

Ø Lin C, Zhang X, Qiang X, et al. Apparent repulsion between equally and oppositely charged spherical polyelectrolytes in symmetrical salt solutions. Journal of Chemical Physics 151, 114902, 2019;

Ø Liu JH, Xi K, Zhang X, et al. Structural flexibility of DNA-RNA hybrid duplex: stretching and twist-stretch coupling. Biophysical Journal 117:74-86, 2019;

Ø Tan YL, Feng CJ, Jin L, et al. What is the best reference state for building statistical potentials in RNA 3D structure evaluation? RNA. 25: 793-812, 2019;

Ø Jin L, Shi YZ, Feng CJ, et al. Modeling structure, stability, and flexibility of double-stranded RNAs in salt solutions. Biophysical Journal 115: 1403-1416, 2018;

Ø Shi YZ, Jin L, Feng CJ, et al. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions. Plos Computational Biology 14: e1006222, 2018;

Ø Xi K, Wang FH, Xiong G, et al. Competitive binding of Mg2+ and Na+ ions to nucleic acids: from helices to tertiary structures. Biophysical Journal 114: 1776-1790, 2018;

Ø Zhang JS, Zhang X, Zhang ZL, et al. Potential of mean force between oppositely charged nanoparticles: A comprehensive comparison between Poisson– Boltzmann theory and Monte Carlo simulations. Scientific Reports 7: 14145, 2017;

Ø Zhang ZL, Wu YY, Xi K, et al. Divalent ion-mediated DNA-DNA interactions: A comparative study of triplex and duplex. Biophysical Journal 113:517-528, 2017. (Highlighted article);

Ø Zhang X, Bao L, Wu YY, et al. Radial distribution function of semiflexible oligomers with stretching flexibility. Journal of Chemical Physics 147:054901, 2017. (Featured article and recommended as AIP news);

Ø Bao L, Zhang X, Shi YZ, et al. Understanding the relative flexibility of RNA and DNA duplexes: stretching and twist-stretch coupling. Biophysical Journal 112:1094-1104, 2017;

Ø Zhang X, Zhang JS, Shi YZ,et al. Potential of mean force between like-charged nanoparticles: many-body effect. Scientific Reports 6: 23434 (1-12), 2016;

Ø Shi YZ, Jin L, Wang FH, et al. Predicting 3D structure, flexibility and stability of RNA hairpins in monovalent and divalent ion solutions. Biophysical Journal 109: 2654-2665, 2015;

Ø Wu YY, Zhang ZL, Zhang JS, et al. Multivalent ion-mediated nucleic acid helix-helix interactions: RNA versus DNA. Nucleic Acids Research 43: 6156-6165, 2015.

Ø Wu YY, Bao L, Zhang X, et al. Flexibility of short DNAs with finite-length effect: from base pairs to tens of base pairs. Journal of Chemical Physics 142: 125103(1-13), 2015;

Ø Shi YZ, Wang FH, Wu YY, et al. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect. Journal of Chemical Physics 141:105102(1-13), 2014.

Ø Wang FH, Wu YY, & Tan ZJ, Salt contribution to the flexibility of single-stranded nucleic acid of finite length. Biopolymers 99:370–381, 2013. (Cover picture);

Ø Tan ZJ & Chen SJ. Ion-mediated RNA structural collapse: effect of spatial confinement. Biophysical Journal 103:827-836, 2012;

Ø Tan ZJ & Chen SJ. Salt contribution to RNA tertiary structure folding stability. Biophysical Journal 101:176-187, 2011;

Ø Tan ZJ & Chen SJ. Predicting ion binding properties for RNA tertiary structures. Biophysical Journal 99:1565-1576 2010 ;

Ø Tan ZJ & Chen SJ. Salt dependence of nucleic acid hairpin stability. Biophysical Journal 95:738-752, 2008;

Ø Tan ZJ & Chen SJ. Electrostatic free energy landscapes for DNA helix bending. Biophysical Journal 94:3137-3149, 2008;

Ø Tan ZJ & Chen SJ. RNA helix stability in mixed Na+/Mg2+ solutions. Biophysical Journal 92:3615-3632, 2007;

Ø Tan ZJ & Chen SJ. Electrostatic free energy landscapes for nucleic acid helix assembly. Nucleic Acids Research 34:6629-6639, 2006;

Ø Tan ZJ & Chen SJ. Ion-mediated nucleic acid helix-helix interactions. Biophysical Journal 91:518-536, 2006;

Ø Tan ZJ & Chen SJ. Nucleic acid helix stability: effects of salt concentration, cation valency and size, and chain length. Biophysical Journal 90:1175-1190, 2006;

Ø Tan ZJ & Chen SJ. Electrostatic correlation and fluctuations for ion binding to finite length polyelectrolyte. Journal of Chemical Physics 122:044903(1-16), 2005;

Ø Tan ZJ, Zou XW, Huang SY, et al. Pattern of particle distribution in multi-particle system by random walk with memory enhancement and decay. Physical Review E 66:011101, 2002;

Ø Tan ZJ, Zou XW, Huang SY, et al. Deposition, diffusion and aggregation on percolations: A model for nanostructure growth on nonuniform substrates. Physical Review B 65:235403, 2002;

Ø Tan ZJ, Zou XW, Zhang W, et al. Pattern formation on nonuniform surfaces by correlated-random sequential adsorption. Physical Review E 65:057201, 2002;

Ø Tan ZJ, Zou XW, Huang SY, et al. Random walk with memorial enhancement and decay. Physical Review E 65:041101, 2002;

Ø Tan ZJ, Zou XW & Jin ZZ. Percolation with long-range correlations for epidemic spreading. Physical Review E 62:8409-8412, 2000;

Ø Tan ZJ, Zou XW, Zhang WB, et al. Structure transition in cluster-cluster aggregation under external fields. Physical Review E 61:734-737, 2000;

Ø Tan ZJ, Zou XW, Zhang WB, et al. Influence of particle size on diffusion-limited aggregation. Physical Review E 60:6202-6205, 1999;

Ø Tan ZJ, Zou XW, Zhang WB, et al. Influences of the size and dielectric properties of particles on electrorheological response. Physical Review E 59:3177-3181, 1999.



关闭信息】  【打印信息